
Lecture 16

Convergence and Acceleration of Source Iterations

1 Convergence of Source Iterations

In a previous lecture, it was shown that each source iteration adds the contribution from

another generation of scatter to the flux solution. Thus it is clear that the source iteration

process will converge quickly whenever particles scatter just a few times on the average

before being absorbed or escaping the system. Optically thin or highly absorbing systems

clearly fall into this category. It is also clear that the source iteration process will converge

very slowly in diffusive problems because the particles can scatter an arbitrary number of

times on the average before being absorbed or escaping the system. The purpose of this

section is to use Fourier techniques to determine the convergence rate of the source iteration

process for a model problem. This model problem is defined by continuum transport

rather than the Sn approximation. The scattering is assumed to be isotropic, the transport

domain is assumed to be infinite, and the transport medium is characterized by a total

cross-section, σt, and a scattering cross-section, σs. We begin the analysis with the source

iteration equations:

µ
∂ψ�+1

∂x
+ σtψ

�+1 =
σs

4π
φ� +

q0
4π

. (1)
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where 
 is the iteration index. The exact transport solution satisfies

µ
∂ψ

∂x
+ σtψ =

σs

4π
φ+

q0
4π

. (2)

Subtracting Eq. (1) from Eq. (2), we get an equation that relates the angular flux error at

iteration step 
+ 1 to the scalar flux error at iteration step 
:

µ
∂δψ�+1

∂x
+ σtδψ

�+1 =
σs

4π
δφ� , (3)

where the angular flux error is

δψ�+1 = ψ − ψ�+1 , (4)

and the scalar flux error is

δφ� = φ− φ� = 2π

∫ +1

−1

δψ� dµ . (5)

We next make the Fourier anzatz, i.e., we assume that

δψ(x, µ) = δΨ(λ, µ) exp(iλx) , (6)

where i =
√
(− 1). The continuum of functions corresponding to exp(iλx) for each value

of λ ∈ (−∞,+∞) can be used to construct any square-integrable function, f(x). In

particular,

f(x) =
1

2π

∫ +∞

−∞
f̂(λ) exp(iλx) dλ , (7)
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where f̂ is the Fourier transform of f :

f̂(x) =

∫ +∞

−∞
f̂(x) exp(−iλx) dx . (8)

Thus Eq. (6) is equivalent to assuming that δψ has the spatial dependence of a single

continuum basis function. This is particularly useful for two reasons. First, Fourier modes

are eigenfunctions of differential spatial operators, making it much easier to invert such

operators. Second, if we can determine how the iteration error associated with each mode

is attenuated, we can also determine how the iteration errors associated with a general

function are attenuated. Substituting from Eq. (6) into into Eq. (3), and dividing the

Eq. (3) by exp(iλx), we get

(µiλ+ σt) δΨ
�+1 =

σs

4π
δΦ� . (9)

Note that the spatial derivative term in Eq. (3) has been replaced with an algebraic ex-

pression. Thus we can trivially solve Eq. (9) for Ψ�+1:

δΨ�+1 =
σs

4π (µiλ+ σt)
δΦ� . (10)

Since we are only iterating on the scalar flux, we need only relate the error in the scalar

flux at step 
 + 1 to the error in the scalar flux at step 
. To do this, we simply integrate

Eq. (10) over all angles. To facilitate that integration we both divide and multiply the

right side of Eq. (10) by the complex conjugate of µiλ+ σt:

δΨ�+1 =
σs (σt − µiλ)

4π (µ2λ2 + σ2
t )

δΦ� . (11)
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Figure 1: Eigenvalue plot for source iteration with c = 1.

the µ-dependent term in the numerator is odd in µ, so

δΦ�+1 = 2π

∫ +1

−1

σsσt

4π (µ2λ2 + σ2
t )
dµ δΦ�+1 ,

=
σs

λ
arctan

(
λ

σt

)
δΦ� . (12)

For plotting purposes, it is useful to re-express Eq. (12) in terms of the scattering ratio, c,

and another dimensionless parameter, κ = λ/σt:

δΦ�+1 =
c

κ
arctan (κ) δΦ� . (13)

A plot of this eigenvalue function with c = 1 is given in Fig. 1. Because the function is

even, we need only consider κ ≥ 0. It can be seen from Fig. 1 that the spectral radius
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occurs at κ = 0 and is equal to the scattering ratio. Thus, the spectral radius is equal to

one for a pure scattering medium. Our analysis applies to an infinite medium where no

leakage is possible. In real calculations, the spectral radius is not one when c = 1, but it

can be arbitrarily close to 1. Thus we need to find a way to accelerate the source iteration

process when c is close to one.

2 Diffusion-Synthetic Acceleration

One of the most effective ways of accelerating the source iteration process is a technique

known as diffusion-synthetic acceleration. The basic idea behind this scheme is first perform

a source iteration, and then use a diffusion approximation to estimate the error in the scalar

flux iterate. This estimate is then used to improve the accuracy of the iterate. The first

step in the derivation of the diffusion-synthetic acceleration scheme is to derive an exact

equation for δψ�+1. We begin this derivation by subtracting the quantity, σs

4π
δφ�+1 from

both sides of Eq. (3):

µ
∂δψ�+1

∂x
+ σtδψ

�+1 − σs

4π
δφ�+1 =

σs

4π

(
δφ� − δφ�+1

)
. (14)

Recognizing that

δφ� − δφ�+1 =
(
φ− φ�

) − (
φ− φ�+1

)
= φ�+1 − φ� , (15)
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Eq. (14) can be re-expressed as follows:

µ
∂δψ�+1

∂x
+ σtδψ

�+1 − σs

4π
δφ�+1 =

σs

4π

(
φ�+1 − φ�

)
. (16)

Thus we see that the error in the angular flux at iteration step 
+1 satisfies the transport

equation with a source equal to

R�+1 =
σs

4π

(
φ�+1 − φ�

)
. (17)

This source represents the residual associated with ψ�+1. To demonstrate the general nature

of the residual, we consider an arbitrary equation of the form,

Ax = y , (18)

where A is a linear operator, x is the solution, and y is the source. Let x̃ denote any

approximation to x. The residual associated with x̃ and Eq. (18) is defined as follows:

R̃ = y − Ax̃ . (19)

If we subtract Eq. (19) from Eq. (18) and algebraically manipulate the result, we find that

Aδx̃ = R̃ , (20)

where the error associated with x̃ is denoted by δx̃ = x− x̃.

Since Eq. (16) is exact, we can define an iteration process that converges in one accel-

erated iteration:

µ
∂ψ�+ 1

2

∂x
+ σtψ

�+ 1
2 =

σs

4π
φ� +

q0
4π

. (21a)
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φ�+ 1
2 = 2π

∫ +1

−1

ψ�+ 1
2 dµ , (21b)

µ
∂δψ�+ 1

2

∂x
+ σtδψ

�+ 1
2 − σs

4π
δφ�+ 1

2 =
σs

4π

(
φ�+ 1

2 − φ�
)
. (21c)

φ�+1 = φ�+ 1
2 + δφ�+ 1

2 . (21d)

However, there is a glaring deficiency in this scheme: the equation for the error is just as

hard to solve as the original transport equation itself. The basic theme of all synthetic

acceleration schemes is to substitute an approximation to the exact error equation that is

simple enough to solve efficiently, but accurate enough to give effective acceleration. In

order to see why a diffusion approximation is a good choice, we must consider the nature

of the iterative error for those modes that are the most difficult to converge. In particular,

we expand Eq. (10) about λ = 0 to determine the nature of the angular flux error for those

modes that are the most difficult to attenuate with a sweep:

δΨ�+1 =
σs

4π

(
1

σt

− µiλ

)
δΦ� . (22)

Equation (22) clearly shows that the angular flux error has a linearly anisotropic angular

dependence. Since the diffusion approximation is exact for such a dependence, we can

expect the diffusion estimate for the scalar flux error to be exact for λ = 0, thus the

accelerated iteration will completely attenuate those errors most poorly attenuated by the

sweep. This is good, but it is not the whole story. Since diffusion theory is not exact for

the higher frequency modes, we must be concerned that the errors for these modes may
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be significantly overestimated, leading to an overall increase in the error for these modes.

To determine what actually happens, we first define the diffusion-synthetic acceleration

scheme:

µ
∂ψ�+ 1

2

∂x
+ σtψ

�+ 1
2 =

σs

4π
φ� +

q0
4π

. (23a)

φ�+ 1
2 = 2π

∫ +1

−1

ψ�+ 1
2 dµ , (23b)

− ∂

∂x

1

3σt

∂∆φ�+ 1
2

∂x
+ σa∆φ

�+ 1
2 = σs

(
φ�+ 1

2 − φ�
)
. (23c)

φ�+1 = φ�+ 1
2 +∆φ�+ 1

2 . (23d)

Note that we use ∆φ to denote an estimate of the scalar flux error as opposed to δφ, which

denotes the true error. To analyze the effectiveness of this scheme, we must re-express the

DSA algorithm in terms of the error at each step. In particular, we first subtract Eq. (23a)

from Eq. (1) to obtain

µ
∂δψ�+ 1

2

∂x
+ σtδψ

�+ 1
2 =

σs

4π
δφ� . (24a)

Next we subtract Eq. (23b) from the trivial equation, φ = 2π
∫ +1

−1
ψ�+ 1

2 dµ, to get

δφ�+ 1
2 = 2π

∫ +1

−1

δψ�+ 1
2 dµ . (24b)

Next we add the trivial expression, σs (φ− φ), to the right side of Eq. (23c) to obtain

− ∂

∂x

1

3σt

∂∆φ�+ 1
2

∂x
+ σa∆φ

�+ 1
2 = σs

(
δφ� − δφ�+ 1

2

)
. (24c)

8



Finally, we subtract Eq. (23d) from the trivial equation, φ = φ, to obtain

δφ�+1 = δφ�+ 1
2 −∆φ�+ 1

2 . (24d)

We begin a Fourier Fourier analysis of the DSA algorithm, by assuming the Fourier anzatz

in Eqs. (24a) through (24d):

(µiλ+ σt) δΨ
�+ 1

2 =
σs

4π
δΦ� , (25a)

δΦ�+ 1
2 = 2π

∫ +1

−1

δΨ�+ 1
2 dµ , (25b)

(
λ2

3σt

+ σa

)
∆Φ�+ 1

2 = σs

(
δΦ� − δΦ�+ 1

2

)
, (25c)

δΦ�+1 = δΦ�+ 1
2 −∆Φ�+ 1

2 . (25d)

Solving Eq. (25a) for δΨ�+ 1
2 and integrating over all directions, we get

δΦ�+ 1
2 =

σs

λ
arctan

(
λ

σt

)
δΦ� , (26)

Substituting from Eq. (26) into the right side of Eq. (25c), and solving for ∆Φ�+ 1
2 , we

obtain

∆Φ�+ 1
2 =

σs

[
1− σs

λ
arctan

(
λ
σt

)]
λ2

3σt
+ σa

δΦ� . (27)

Finally, substituting from Eqs. (26) and (27) into Eq. (25d), we obtain an expression that

relates the error at step 
+ 1 to the error at step 
:

δΦ�+1 =


σs

λ
arctan

(
λ

σt

)
−
σs

[
1− σs

λ
arctan

(
λ
σt

)]
λ2

3σt
+ σa


 δΦ� . (28)
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Figure 2: Comparison of source iteration and DSA eigenfunctions with c = 1.

for plotting purposes, it is useful to re-express Eq. (28) in terms of the dimensionless

parameter, κ = λ/σt:

δΦ�+1 =

{
c

κ
arctan (κ)− 3c

[
1− c

κ
arctan (κ)

]
κ2 + 3(1− c)

}
δΦ� . (29)

A plot of this eigenfunction together with the source iteration eigenfunction is given

in Fig. 2 for c = 1. It can be seen from Fig. 2 that the diffusion approximation does

indeed annihilate the κ = 0 error mode, resulting in an accelerated spactral radius equal

to reoughly 0.23. For arbitrary c, the spectral radius is roughly 0.23c. This is an excellent

spectral radius. It can also be seen from Fig. 2 that the unaccelerated and accelerated

eigenvalues are nearly identical for the high-frequency modes. This means that the diffusion
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approximation grossly underestimates the high-frequency errors, which is very good since

the source iteration process strongly attenuates them. There is no need for the diffusion to

do anything for the high-frequency modes. If the diffusion approximation were to amplify

high-frequency modes, the standard method for dealing with it would be to perform more

sweeps after the diffusion solve to counter the amplification.

This is standard multigrid strategy. DSA represents a two-grid method because diffusion

can be thought of as a “coarse angular grid” approximation to transport. The basic idea

of a two-grid methods is to attenuate high-frequency error using a “relaxation scheme”,

which generally corresponds to some type of local iteration. A coarse-grid operator is

then used to estimate the errors with the expectation that the low-frequency errors will

be accurately estimated because they can be resolved with a coarse-mesh operator. If the

coarse-grid operator amplifies high-frequency errors, more relaxations are added after the

coarse-grid correction is made to eliminate the amplification. This is fine as long as the

high-frequency errors are not too highly amplified resulting in a requirement for excessive

additional relaxations. In a multigrid method, once has a hierachy of grids with each grid

estimating the error on the grid above it. This process sounds like it would cost a great

deal to execute, but multigrid methods can be very efficient. We can get away with a

two-grid method for the transport equation when the scattering is isotropic or linearly

anisotropic, but when it is highly anisotropic and forward-peaked, an angular multigrid
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method is required. We shall later describe such a method for charged-particle transport

calculations.

Provided that the diffusion equation is consistently differenced and the scattering is

either isotropic or weakly anisotropic, DSA is an unconditionally effective means of accel-

erating source iterations. For the most part, this is also true in multidimensional calcula-

tions. However, the effectiveness of DSA can be significantly degraded in multidimensional

problems with large material discontinuities. However, this deficiency can be overcome

by using Krylov methods to solve the Sn equations together with DSA reformulated as a

preconditioner. This is a powerful approach. Krylov methods are revolutionizing the way

in whch we solve the Sn equations. We will discuss Krylov method in a later lecture.

2.1 Diffusion Boundary Conditions

Our analysis of the DSA method does not require boundary conditions for the diffusion

equation because the model problem domain is infinite. However, one must obviously

impose boundary conditions on the diffusion equation in real calculations. The principle

for deriving diffusion boundary conditions is straightforward. Although we define our DSA

algorithm so that the scalar flux is directly updated, one could equivalently update the

angular flux as follows:

ψ�+1
m = ψ

�+ 1
2

m +
1

4π
∆φ+

3

4π
∆Jµm , (30)
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where

∆J = − 1

3σt

∂∆φ

∂x
. (31)

Thus we choose the diffusion boundary conditions so that ψ�+1 satisfies (at least approx-

imately) the correct transport boundary conditions. Equivalently, assume that the error

equation is being solved exactly, and choose the transport boundary conditions for that

equation so that ψ�+1 exactly satisfies the correct boundary conditions – then impose these

same conditions (at least approximately) on the diffusion solution. As long as the bound-

ary conditions in the Sn calculation are explicit, i.e., met after each source iteration, the

boundary conditions for the diffusion equation are simple. In particular, with source or

vacuum boundary conditions for the transport solution, the appropriate diffusion boundary

condition is vacuum; and with reflective transport boundary conditions, the appropriate

diffusion boundary condition is reflective. If the transport boundary condition is reflective

and implicit, a boundary source must be added to a reflective diffusion condition to obtain

a reflective condition for the hybrid transport/diffusion iterate at step 
+ 1. For example,

let us assume an implicit reflective transport boundary condition, and let us further assume

that the error equation is being solved with the transport equation rather than the diffusion

equation. Then the transport iterate at the boundary, ψ
�+ 1

2
b will generally not satisfy the

reflective condition. We want to choose the conditions for the transport error equation

so that the corrected transport iterate will meet the reflective condition. In particular we
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want to ensure that

ψ�+ 1
2 (µm) + δψ�+ 1

2 (µm) = ψ�+ 1
2 (−µm) + δψ�+ 1

2 (−µm) , for incoming µm. (32)

Equation (32) can be used to directly define the boundary conditions for the error equation:

δψ�+ 1
2 (µm) = ψ�+ 1

2 (−µm)− ψ�+ 1
2 (µm) + δψ�+ 1

2 (−µm) , for incoming µm. (33)

Equation represents a type of boundary condition known as “reflective plus source,” because

the incoming flux is equal to the outgoing flux (as in the standard reflective condition) plus

a source. The effective source is called the boundary residual:

Rb(µm) = ψ�+ 1
2 (−µm)− ψ�+ 1

2 (µm) , for incoming µm. (34)

Note that if the transport iterate meets the reflective boundary condition, the boundary

residual is identically zero, and the boundary condition for the error equation is simply

reflective. To derive the corresponding boundary condition, we first assume the diffusion

dependence of the angular flux in Eq. (33):

1

4π
∆φ�+ 1

2 +
3

4π
∆J(µm) = Rb(µm) +

1

4π
∆φ�+ 1

2 − 3

4π
∆J(µm) , for incoming µm. (35)

Next, we collect terms in Eq. (35):

3

2π
∆J(µm) = Rb(µm) , for incoming µm. (36)
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Finally, we multiply Eq. (36) by µm and integrate over the incoming directions to obtain a

fixed current condition:

∆J =
∑
µin

Rb(µm)µmwm . (37)
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